A Strategy for Stepwise Regression Procedures in Survival Analysis with Missing Covariates
نویسنده
چکیده
منابع مشابه
کاربرد مدل توأم بقا و داده های طولی در بیماران دیالیز صفاقی
Background and Aim: In many medical studies along with longitudinal data, which are repeatedly measured during a certain time period, survival data are also recorded. In these situations, using models such as, mixed effects models or GEE method for longitudinal data and Cox model for survival data, are not appropriate because some necessary assumptions are not met. Instead, the joint models hav...
متن کاملمقایسه روش بیزی (Bayesian) و کلاسیک در برآرد پارامترهای مدل رگرسیون لجستیک با وجود مقادیر گمشده در متغیرهای کمکی
Background and Aim: Logistic regression is an analytic tool widely used in medical and epidemiologic research. In many studies, we face data sets in which some of the data are not recorded. A simple way to deal with such "missing data" is to simply ignore the subjects with missing observations, and perform the analysis on cases for which complete data are available. Materials and Methods: We c...
متن کاملModel Selection in Logistic Regression and Performance of its Predic
Logistic regression studies often have several covariates and asked to cull these covariates to arrive at a parsimonious model. The goal is to maximize predictive power while minimizing the number of covariates in the model. Purposeful selection of covariates does not provide efficient model in case of large number of covariates while mechanical stepwise and best subsets selection procedures st...
متن کاملFitting Generalized Additive Models: A Comparison of Methods
There are several procedures for fitting generalized additive models, i.e. multivariate regression models for an exponential family response where the influence of each single covariates is assumed to have unknown, potentially non-linear shape. Simulated data is used to compare a smoothing parameter optimization approach for selection of smoothness and covariate, a stepwise approach, a mixed mo...
متن کاملBuilding Cox-Type Structured Hazard Regression Models with Time-Varying Effects
In recent years, flexible hazard regression models based on penalised splines have been developed that allow us to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. Despite their immediate appeal in terms of flexibility, these models introduce additional difficulties when a subset of covariates and the corresponding modelling alternatives have to be cho...
متن کامل